

Meta-surface design How to catch the next wave in optics CIOE 2024, Shenzen, China

Enlightened Planar Optics

12 September 2024

Today Future: Nano-enabled Components

Higher Performance Simplified Miniaturized New Applications

Lens Polishing -Hand-polishing spherical front lenses for microscopes.

Why use meta-surfaces?

PlanOpSim Enlightened Planar Optics WWW.PLANOPSIM.COM

Principles of meta-surfaces

nlightened WWW.PLANOPSIM

- ❖ Meta-surfaces work by controlling how waves propagate through them
- ❖ Meta- atoms locally control exit phase and amplitude

Why is this new?

- ❖ Classical DOE:
	- ⮚Control phase by material height
- ❖ Phase sampling:
	- ⮚DOE -> greyscale or multi-layer lithography
	- ⮚Meta-surface: single lithography step
- ❖ Metasurfaces are **DOEs + extra functions**:
	- ⮚Polarization selectivity
	- ⮚Tuned spectral response: a- or hyper-chromatic
	- ⮚Combined functionalities
	- ⮚Non-linear and/or topology effects

PlanOpSim

PlanO WWW.PLANOPSIM

Planopsim's mission Planopsim supplies **R&D tools** to **engineers** & **scientists** that allow to unlock the maximum benefit of **flat optics** in a **user-friendly** way.

- ❖ Computer Aided **Design software** for Planar Optics & metasurfaces ⮚All-in-one design workflow
- ❖ **Design service** for metasurfaces and photonics > In-house and 3^d party tools

- ❖ Dedicated meta-surface UI and design workflow
- ❖ High speed simulation
- ❖ Multi-scale simulations from nano- to macroscale
	- ➢ Meta-atom -> full wave RCWA
	- ➢ Components -> Physical optics
	- ➢ Systems -> Integration to ray-tracing

Design steps

PlanOpSim **Enlightened Planar Optics** WWW.PLANOPSIM.

Wavefront

Analysis

COM

• Physical Optics

Efficiency & PSF

Cross section in xz-plane

0.940

System model

- **Ray tracing**
- **Analytical**

Ideal

wavefront

Meta-atom design

❖ Theory or raytracing

128,0 192,0 256,0 320,0 384,0 448,0 512,0
Spatial Frequency in cycles per mm

- ❖ Geometric optics
- ❖ cm-m -km
- ❖ Full wave calculation
- ❖ Maxwell solver
- ❖ nm- µm
- ❖ Very time memory intensive (RCWA, FDTD, FEM, …)
- ❖ Propagation optics
- ❖ µm-cm scale

Component Design

• Target matching

• mm scale

 $\begin{tabular}{l|c|c|c} \hline Suppose that 1 & \mbox{min} & \mbox{min} & \mbox{min} \\ \hline \text{which is given by } 1.123\text{ mm} \\ \text{which is given by } 1.123\text{ mm} \\ \text{which is 100\% for the 1.123\% for the$

 $\begin{array}{ll} 0 & \text{on} & \\ 0 & \text{in} & \text{in} \\ 0 & \text{in} & \text{in} \\ 0 & \text{in} & \text{in} \\ 0 & \text{in} & \\ 0 & \text{in} & \text{in} \\ 0 & \text{in} & \text{in} & \text{in} \\ 0 & \text{in} \end{array}$

❖ (Approximated) wave calculations

Nanostructure types

Propagation phase

- ❖ Waveguide confinement
- \triangleq Phase created by optical path length $\varphi = -k_0 n_{eff} d$
- ❖ Structure change -> change n_{eff}
- ❖ Height change -> DOE

Pancharatnam-Berry phase

- ❖ Polarization conversion effect
- ❖ Phase created by rotation of wave plate
- ❖ Non-symmetric structure creates structural birefringence

Resonant phase

- ❖ Strong phase change when 'crossing' a resonance
- ❖ Phase control by different perturbations vs peak of resonance
- ❖ Strong selectivity
- ❖ Metal or dielectric structure

Meta-atom design

- ❖ All 3 mechanisms are present in a **full wave solver**
- ❖ Nano-structure calculation using **Rigorous Coupled Wave Analysis** (Maxwell solver)
- ❖ Thousands of nano-structures in parameter space
- ❖ Benchmark RCWA to FDTD
	- ➢ **RCWA is much faster** for meta-atom calculations
	- ➢ Meta-atom response same in RCWA and FDTD

Calculated field response

Optimization/Machine learning

❖ Benchmark problem (shown):

➢ Optimization of 8 elements with 3 parameters: W, L, alpha

- ❖ 7 algorithms available
	- Bayesian, Covariance Matrix, Differential Evolutior Genetic Algorithm, Gradient Descent, Particle swa Simulated Annealing

perform best

Meta-surface PDK

0-order loss measurement

Design steps

PlanOpSim

Wavefront

Enlightened Planar Optics WWW.PLANOPSIM

4) Analysis

• Physical Optics

Efficiency & PSF

Cross section in xz-plane

 $0.940 0.945$

System model

- **Ray tracing**
- **Analytical**

Ideal wavefront

- ❖ Theory or raytracing
- ❖ Geometric optics
- ❖ cm-m -km

❖ Full wave calculation

Meta-atom design

- ❖ Maxwell solver
- ❖ nm- µm
- ❖ Very time memory intensive (RCWA, FDTD, FEM, …)
- ❖ Propagation optics
- ❖ µm-cm scale

Component Design

• Target matching

• mm scale

 $\begin{tabular}{l|c|c|c} \hline Suppose that 1 & \mbox{min} & \mbox{min} & \mbox{min} \\ \hline \text{which is given by } 1.123\text{ mm} \\ \text{which is given by } 1.123\text{ mm} \\ \text{which is 100\% for the 1.123\% for the$

 $\begin{array}{ll} 0 & \text{all} & \text{all} \\ 0 & \text{in} & \text{in} \\ 0 & \text{in} & \text{in} \\ 0 & \text{in} & \text{in} \\ 0 & \text{in} \\ 0 & \text{in} \end{array}$

- ❖ (Approximated) wave
	- calculations

Meta-atoms in example lens

- ❖Meta-atom library for demonstration
- \dots Radius 80 200nm
- ❖Optimized via RCWA (PlanOpSim Meta-Cell)
- ❖Selected for 360° phase coverage

Phase (°)

Reference design

❖ Meta-lens target wavefront:

$$
\varphi = \frac{2\pi}{\lambda}(\sqrt{r^2 + f^2} - f)
$$

- ❖ Library phase placement
- ❖ Angular spectrum method simulation of focal spot
	- ➢ Transmission efficiency: 93,6%
	- ➢ Focusing efficiency: 80,6%

 \triangleright Phase discretization levels

Full wave calculations

Full wave calculations are accurate but **very slow and memory consuming**. In practice limited to ~100λ

Enlightened Planar Optics
WWW.PLANOPSIM.COM Full wave solution

PlanOpSim

* Simulations were performed with the finite-difference time-domain (FDTD) method, using an open-source software package MEEP

A. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J.D. Joannopoulos, and S.G. Johnson, "[MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method](http://dx.doi.org/doi:10.1016/j.cpc.2009.11.008)," Computer Physics Communications, Vol. 181, pp. 702 (2010) [\(pdf\)](http://ab-initio.mit.edu/~oskooi/papers/Oskooi10.pdf)

Comparison

PlanOpSim **Enlightened Planar Optics** WWW.PLANOPSIM.COM

ODA vs. LPA

- ◆ Standard meta-surface design flow:
▶ Meta-atom: periodic boundary
	- Meta-atom: periodic boundary
	- > Meta-surface: phase mapping, implicit local periodic approximation (LPA)
- ❖ Overlapping Domain Approximation (ODA)
	- \triangleright Expand simulation area per met-atom
	- \triangleright Choice of #neighbours 0, 1, 2, ...
	- \triangleright Calculate with RCWA
	- \triangleright Extract field amplitude and phase for central meta-atom
- ❖ Computational implications:
	- \triangleright Library (8 values) -> scanning (1.3^e+8)

Phase error

abs(MEEP - LPA) (rmse: 0.5)

LPA deviation \Box ¹⁰ ODA deviation

 -0.8

 -0.6

 -0.4

 -0.2

 -0.4

 -0.2

Comparison

Sim PlanO **Enlightened Planar Optics** WWW.PLANOPSIM. COM

Overlapping Domain Analysis improves meta-surface calculation accuracy and is **18x faster than full wave calculation**

m diameter metalens i9, 64Gb RAM PC me limited to 24h lation

Design steps

Wavefront

Enlightened Planar Optics WWW.PLANOPSIM. COM

Analysis

Physical Optics

Efficiency & PSF

Cross section in xz-plane

0.940

System model

- Ray tracing
- **Analytical**

- ❖ Theory or raytracing
- ❖ Geometric optics
- ❖ cm-m -km

- ❖ Full wave calculation
- ❖ Maxwell solver
- ❖ nm- µm
- ❖ Very time memory intensive (RCWA, FDTD, FEM, …)
- ❖ Propagation optics
- ❖ µm-cm scale
- ❖ (Approximated) wave calculations

Ray tracing

systems

- ❖ Analytical calculation only possible in simple
	-

2 meta-surface system Hybrid meta-surface + refractivesystem

❖ Realistic situations:

 \triangleright Multiple specifications

- \triangleright Multiple components
- ❖ **Optimize** wavefront **in ray tracing**

⮚Parametrized wavefront description \triangleright E.g. polynomial series

$$
\Phi=M\sum_{i=1}^NA_i\rho^{2i}
$$

❖ Advantages:

⮚**Co-optimization** of multiple metasurfaces ⮚Hybrid systems can be designed \triangleright Investigate complex performance trade-offs

- ❖ Disadvantage:
	- \triangleright Idealized wavefront
	- ⮚Doesn't account for meta-surface design options

Dispersion engineering

- ❖ Meta-surface offer control on material dispersion
- ❖ Dispersion engineering -> controlling phase and phase dispersion

❖ Extract phase and slope per structure

Wang, S. *et al.* A broadband achromatic metalens in the visible. *Nat. Nanotechnol.* **13,** 227–232 (2018).

Dispersion extraction

- \triangleleft Phase + phase dispersion library
- ❖ Mapping:
	- ➢ phase Φ
	- ➢ phase dispersion ΔΦ over spectral band
	- \triangleright Transmission in band
- ❖ Structures in library

Air

Example: hybrid design

Sim PlanO nlightened Planar Optics WWW.PLANOPSIM COM

- ❖Apply meta-surface capability in a system
- ❖Include meta-atom behaviour in the optimizers merit function
- ❖**Hybrid** meta-surface + refractive lenses

Example application: depth sensor

System design

❖Dispersion contrained optical system

Target error MOE1

- ❖Target well reproduced in active area
- ❖Corners exceed dispersion range -> poor target reproduction
- ❖RMS Waverfront aberration <21°(= λ/17)

Target error MOE2

❖Corners exceed dispersion range -> poor target reproduction ❖RMS Waverfront aberration <22°(= λ/16)

❖Transmited light ~49-75%

- ❖ Metasurface wavefronts in ray tracing
- ❖ Millions of meta-atoms: too slow for propagation calculations
- ❖ Wave calculation has 2π wrapped phase
- ❖ Dependent on wavelength, incident angle, polarization
- ❖ To trace any ray **we need a differentiable description**

EXECUTE: Ray Tracing Link

- ❖**Meta-surface has a wavelength, polarization and angle dependant wavefront**
- ❖**Separate target** nearfield wavefront **for 450 and 630nm**
- ❖Lens profile:

*****Based on: GaN Metalens for Pixel-Level Full-Color Routing at Visible Light. *Nano Letters*, *17*(10), 6345–6352.

In this example

Cross section

❖**Wave based simulation** in meta-component analysis ❖Meta-lens focuses at designed position

❖450 and 630nm focal spot on designed position

 \exists Ray Tracing Link

- ❖Decomposition is fit to meta-surface phase
- ❖1 st order model: 1 analytical decomposition per wavefrontµ
- ❖Independent decomposition models multiplexed wavelength effect

20

 θ

 -20

Error wavefront

Error wavefront

Reference design: telecentric imaging system. Dummy window as place holder for meta-
surface substrate ❖ Example: **Pixel level colour routing in system** surface substrate

EXECUTE: Ray Tracing Link

❖ Colour multiplexing meta-lens **designed and exported from PlanOpSim***

Wave simulation 450nm

Nano- to macro design

PlanOpSim **Enlightened Planar Optics** WWW.PLANOPSIM

- ❖ Multiscale model to design from nano-structure to system
- ❖ Levels of approximation allow reaching practical sizes for meta-surfaces
- ❖ Co-optimization of system
	- \triangleright Inform nano and macro level of constraints
	- ➢ Hybrid systems combine stengths of conventional optics and meta-surface

Visit us at booth #1E69 Hall 1!

www.planopsim.com info[@planopsim.com](mailto:%20jonas.vandewalle@planopsim.com) +32 485 565 772

Distribution partners

