

Meta-surface design How to catch the next wave in optics CIOE 2024, Shenzen, China

Enlightened Planar Optics

12 September 2024

Today

Future: Nano-enabled a

Higher Performance Simplified Miniaturized New Applications

Lens Polishing — Hand-polishing spherical front lenses for microscopes.

Why use meta-surfaces?

PlanopSim Enlightened Planar Optics WWW.PLANOPSIM.COM

Principles of meta-surfaces

PlanopSin Enlightened Planar Opt WWW.PLANOPSIM.CO

Ray picture

- Meta-surfaces work by controlling how waves propagate through them
- Meta- atoms locally control exit phase and amplitude

Why is this new?

- Classical DOE:Control phase by material height
- Phase sampling:
 - DOE -> greyscale or multi-layer lithography
 - Meta-surface: single lithography step

Metasurfaces are DOEs + extra functions:

- ➢ Polarization selectivity
- >Tuned spectral response: a- or hyper-chromatic
- ➤Combined functionalities
- ➢Non-linear and/or topology effects

PlanOpSim

PlanopSim Enlightened Planar Optics WWW.PLANOPSIM.COM

Planopsim's mission Planopsim supplies R&D tools to engineers & scientists that allow to unlock the maximum benefit of flat optics in a user-friendly way.

- Computer Aided Design software for Planar Optics
 & metasurfaces
 > All-in-one design workflow
- Design service for metasurfaces and photonics
 > In-house and 3^d party tools

		tics	LIGHTTRANS	Synopsys °
CLOUD OR LOCAL	\bigcirc			
INTUITIVE LEARNING CURVE	\bigcirc			
LARGE AREA	\bigcirc		\bigotimes	\bigotimes
INTEGRATION WITH RAY TRACING	\bigcirc	\checkmark	\checkmark	\checkmark
SCRIPTING	\bigcirc	\checkmark	\checkmark	\checkmark
EXPORT TO MANUFCATURING	\bigcirc	8	\checkmark	\checkmark
FULL METASURFACE WORKFLOW	\bigcirc	\checkmark		S
DEDICATED META-SURFACE SUPPORT	\bigcirc	\bigotimes	\bigotimes	

- Dedicated meta-surface UI and design workflow
- High speed simulation
- Multi-scale simulations from nano- to macroscale
 - > Meta-atom -> full wave RCWA
 - Components -> Physical optics
 - > Systems -> Integration to ray-tracing

Design steps

- RMS WA

Wavefront

Enlightened Planar Optics WWW.PLANOPSIM.COM

Analysis

Physical Optics

Efficiency & PSF

Cross section in xz-plane

0.940

System model

- Ray tracing
- Analytical •

Ideal

Meta-atom design

128,0 192,0 256,0 320,0 384,0 448,0 512,0 Spatial Frequency in cycles per mm

- Geometric optics
- ✤ cm-m -km

- Full wave calculation
- ✤ Maxwell solver
- 🂠 nm- μm
- Very time memory intensive (RCWA, FDTD, FEM, ...)
- Propagation optics
- ψm-cm scale

Component Design

Target matching

mm scale

✤ (Approximated) wave calculations

Nanostructure types

Propagation phase

- Waveguide confinement
- ✤ Phase created by optical path length $\varphi = -k_0 n_{eff} d$
- ✤ Structure change -> change n_{eff}
- ✤ Height change -> DOE

Pancharatnam-Berry phase

- Polarization conversion effect
- Phase created by rotation of wave plate
- Non-symmetric structure creates structural birefringence

Resonant phase

- Strong phase change when 'crossing' a resonance
- Phase control by different perturbations vs peak of resonance
- Strong selectivity
- Metal or dielectric structure

Meta-atom design

- ✤ All 3 mechanisms are present in a full wave solver
- Nano-structure calculation using Rigorous Coupled Wave Analysis (Maxwell solver)
- Thousands of nano-structures in parameter space
- Benchmark RCWA to FDTD
 - RCWA is much faster for meta-atom calculations
 - Meta-atom response same in RCWA and FDTD

Calculated field response

Optimization/Machine learning

Benchmark problem (shown):

> Optimization of 8 elements with 3 parameters: W, L, alpha

- ✤ 7 algorithms available
 - Bayesian, Covariance Matrix, Differential Evolutior Genetic Algorithm, Gradient Descent, Particle swa Simulated Annealing

perform best

Meta-surface PDK

0-order loss measurement

Design steps

Wavefront

PlanOpSim **Enlightened Planar Optics** WWW.PLANOPSIM

4) Analysis

Physical Optics

Efficiency & PSF

Cross section in xz-plane

0.935 0.940 0.945

System model

- Ray tracing
- Analytical •

Ideal

wavefront

- Theory or raytracing
- Geometric optics
- ✤ cm-m -km

- Full wave calculation
- Maxwell solver
- 🂠 nm- μm
- Very time memory intensive (RCWA, FDTD, FEM, ...)
- Propagation optics
- ψm-cm scale

Component Design

Target matching

mm scale

- ✤ (Approximated) wave
 - calculations

Meta-atoms in example lens

- Meta-atom library for demonstration
- ✤ Radius 80 200nm
- Optimized via RCWA (PlanOpSim Meta-Cell)
- Selected for 360° phase coverage

1										
0.8					`~~~					180
										160
0.4									-	140 120
0.2									-	100
0 - -2	200 -1	150 –	100	-50	0	50	100	150	200	80

Phase (°)

Parameter	value
Unit cell	400 x 400nm
Wavelength	520nm
Angle of incidence	0°
Polarization	ТЕ
Substrate	SiO ₂
Height	1500nm

Reference design

Meta-lens target wavefront:

$$\varphi = \frac{2\pi}{\lambda}(\sqrt{r^2 + f^2} - f)$$

- Library phase placement
- Angular spectrum method simulation of focal spot
 - > Transmission efficiency: 93,6%
 - ➢ Focusing efficiency: 80,6%

W/m2

Focal spot

0

width (µm)

> Phase discretization levels

Full wave calculations

Full wave calculations are accurate but very slow and memory consuming. In practice limited to $\sim 100\lambda$

20

PlanOpSim

Enlightened Planar Optics WWW.PLANOPSIM.COM

* Simulations were performed with the finite-difference time-domain (FDTD) method, using an open-source software package MEEP

- 1.8

- 1.4

1.0

A. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J.D. Joannopoulos, and S.G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Computer Physics Communications, Vol. 181, pp. 687-702 (2010) (pdf)

Comparison

PlanOpSim Enlightened Planar Optics WWW.PLANOPSIM.COM

ODA vs. LPA

- Standard meta-surface design flow:
 - Meta-atom: periodic boundary
 - Meta-surface: phase mapping, implicit local periodic approximation (LPA)
- Overlapping Domain Approximation (ODA)
 - Expand simulation area per met-atom
 - > Choice of #neighbours 0, 1, 2, ...
 - Calculate with RCWA
 - Extract field amplitude and phase for central meta-atom
- Computational implications:
 - Library (8 values) -> scanning (1.3^e+8)

Phase error

LPA deviation

ODA deviation

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 6.0

- 0.4

- 0.2

Comparison

PlanopSim Enlightened Planar Optics WWW.PLANOPSIM.COM

Overlapping Domain Analysis improves meta-surface calculation accuracy and is **18x faster than full wave calculation**

	Calculation time*	Memory usage	rmse	Max. diameter*
LPA	1 minute	<1Gb	0,5	6000 μm
ODA	20 minutes	8Gb	0,28	120µm**
Full wave (meep)	6 hours	32Gb		10µm

*10μm diameter metalens Core i9, 64Gb RAM PC ** Time limited to 24h calculation

Design steps

Enlightened Planar Optics WWW.PLANOPSIM.COM

System model

- Ray tracing
- Analytical

Ideal

Meta-atom design

- Theory or raytracing
- Geometric optics
- ✤ cm-m -km

- Full wave calculation
- ✤ Maxwell solver
- 🂠 nm- μm
- Very time memory intensive (RCWA, FDTD, FEM, ...)
- Propagation optics
- ψm-cm scale

Component Design

Target matching

mm scale

✤ (Approximated) wave calculations

0.940

- RMS WA

Ray tracing

- Analytical calculation only possible in simple systems
- Realistic situations:

> Multiple specifications

- > Multiple components
- Optimize wavefront in ray tracing
 - Parametrized wavefront descriptionE.g. polynomial series

$$\Phi = M \sum_{i=1}^{N} A_i \rho^{2i}$$

Advantages:

Co-optimization of multiple metasurfaces
 Hybrid systems can be designed
 Investigate complex performance trade-offs

- Disadvantage:
 - Idealized wavefront
 - > Doesn't account for meta-surface design options

2 meta-surface system

Hybrid meta-surface + refractivesystem

Spatial frequency (cycles/mm)

Dispersion engineering

- Meta-surface offer control on material dispersion
- Dispersion engineering -> controlling phase and phase dispersion

Extract phase and slope per structure

Wang, S. *et al.* A broadband achromatic metalens in the visible. *Nat. Nanotechnol.* **13**, 227–232 (2018).

Dispersion extraction

- Phase + phase dispersion library
- Mapping:
 - > phase Φ
 - > phase dispersion $\Delta \Phi$ over spectral band
 - Transmission in band
- Structures in library

Parameter	Value
Р	450nm
Height	1300nm
Spectrum	920-960nm
Incidence	0°
Polarization	TE
Substrate	SiO ₂

Example: hybrid design

PlanOpSim Enlightened Planar Optics WWW.PLANOPSIM.COM

- Apply meta-surface capability in a system
- Include meta-atom behaviour in the optimizers merit function
- Hybrid meta-surface + refractive lenses

Example application: depth sensor

Quantity	Specification
Field of view	HFOV 30°
Imaging performance	MTF >70% @100lp/mm Diffraction limited
Telecentric	CRA <3°
Back Focal Length	5mm
Design Wavelength	920-960nm
Numerical aperture	0,276
F-number	1,74
Image Size	6,4x4mm
Distortion	<10%

System design

Dispersion contrained optical system

Quantity	Specification	Hybrid 2 MOE + 2 Spherical			ıl
Field of view	HFOV 30°	30°			
Imaging MTF >70% @100lp/mm		0°	5°	10°	15°
performance	Diffraction limited	72,6%	71,3%	71%	66,7%
Telecentric	CRA <3°	0,8°			
Back Focal	5mm	5mm			
Length					
Design	920-960nm	920-960			
Wavelength					
Numerical	0,276	0,276			
aperture					
F-number	1,74	1,7474			
Image Size	6,4x4mm	3,2 (lateral colour)			
Distortion	<10%	1,5%			
Total volume		1311,6 m	m³		

Target error MOE1

- Target well reproduced in active area
- Corners exceed dispersion range -> poor target reproduction
- ♦ RMS Waverfront aberration $<21^{\circ}(=\lambda/17)$

Target vs. Meta-surface phase

Phase error(。)

 $x(\mu m)$

PlanOpSim

Enlightened Planar Optics

Phase error vs. wavelength

Target error MOE2

 Corners exceed dispersion range -> poor target reproduction
 RMS Waverfront aberration <22°(= λ/16)

Transmited light ~49-75%

Target vs. Meta-surface phase

- Metasurface wavefronts in ray tracing
- Millions of meta-atoms: too slow for propagation calculations
- * Wave calculation has 2π wrapped phase
- Dependent on wavelength, incident angle, polarization
- To trace any ray we need a differentiable description

- Meta-surface has a wavelength, polarization and angle dependent wavefront
- Separate target nearfield wavefront for 450 and 630nm
 Lens profile:

*Based on: GaN Metalens for Pixel-Level Full-Color Routing at Visible Light. *Nano Letters*, *17*(10), 6345–6352.

In this example

Quantity	Value
Dimensions	50µm x 50µm
Wavefront	100µm focal length with ±12,5 um shift in the y direction for
Wavelength	450nm & 630nm
Meta-atom library	From step 1
Decentering y _c	$\pm 12,5\mu m$ for blue and red

Cross section

Wave based simulation in meta-component analysis
 Meta-lens focuses at designed position

✤450 and 630nm focal spot on designed position

Wavelengt h	Shift	Transmissi on	Focusing efficiency
450nm	-12,8 µm	93,7%	87,1%
630nm	+12,8 µm	97,3%	89%

- Decomposition is fit to meta-surface phase
- $\bigstar 1^{st}$ order model: 1 analytical decomposition per wavefront μ
- Independent decomposition models multiplexed wavelength effect

Error wavefront

Error wavefront

 Example: Pixel level colour routing in system
 Reference design: telecentric imaging system. Dummy window as place holder for metasurface substrate

∄ Ray Tracing Link

Colour multiplexing meta-lens designed and exported from PlanOpSim*

Wave simulation 450nm

Nano- to macro design

Enlightened Planar Optics

- Multiscale model to design from nano-structure to system
- Levels of approximation allow reaching practical sizes for meta-surfaces
- Co-optimization of system
 - Inform nano and macro level of constraints
 - Hybrid systems combine stengths of conventional optics and meta-surface

Visit us at booth #1E69 Hall 1!

www.planopsim.com info@planopsim.com +32 485 565 772

Distribution partners

