

Overlapping domain analysis for large-area meta-surfaces

Enlightened Planar Optics

30 January 2024

PlanOpSim

PlanopSim Enlightened Planar Optics WWW.PLANOPSIM.COM

Planopsim's mission Planopsim supplies R&D tools to engineers & scientists that allow to unlock the maximum benefit of flat optics in a user-friendly way.

- Computer Aided Design software for Planar Optics & metasurfaces
 All-in-one design workflow
- Design service for metasurfaces and photonics
 In-house and 3^d party tools

Metalens design workflow

2 Planops Enlightened Planar WWW.PLANOPSIM

- Relatively fast and large area calculation
- * Local periodic approximation, near-field coupling approximated
- Discrepancy between design and actual component

Meta-atom optimization

- Most commonly used full wave solver + periodic boundary condition
- Nano-structure calculation using Rigorous Coupled Wave Analysis (Maxwell solver)
- Thousands of nano-structures in parameter space
- Benchmark PlanOpSim (RCWA) to FDTD
 - > RCWA is much faster for meta-atom calculations
 - Meta-atom response same in RCWA and FDTD

RCWA (PlanOpSim) and FDTD calculation in agreement

Meta-atoms in example lens

Color

- Meta-atom library for demonstration
- ✤ Radius 80 200nm
- ♦ Optimized via RCWA (PlanOpSim Meta-Cell) ²/_⊢^{0.6}
- ✤ Selected for 360° phase coverage

Phase (°)

LPA phase matching

LPA

Calculation time	Memory usage
1 minute	<1Gb

Full wave calculations

Full wave calculations are accurate but very slow and memory consuming. In practice limites to $\sim 100\lambda$

32Gb

PlanOpSim

Enlightened Planar Optics WWW.PLANOPSIM.COM

* Simulations were performed with the finite-difference time-domain (FDTD) method, using an open-source software package MEEP

Full wave (meep)

A. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J.D. Joannopoulos, and S.G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Computer Physics Communications, Vol. 181, pp. 687-702 (2010) (pdf)

6 hours

Comparison

PlanOpSim Enlightened Planar Optics WWW.PLANOPSIM.COM

ODA vs. LPA

- Standard meta-surface design flow:
 - Meta-atom: periodic boundary
 - Meta-surface: phase mapping, implicit local periodic approximation (LPA)
- Overlapping Domain Approximation (ODA)
 - Expand simulation area per met-atom
 - Choice of #neighbours 0, 1, 2, …
 - Calculate with RCWA
 - Extract field amplitude and phase for central meta-atom
- Computational implications:
 - Library (8 values) -> scanning (1.3^e+8)

ODA calculations

Overlapping Domain Analysis accounts for interaction of meta-atom with neighbouring structures. Local calculation avoids memory restriction of full wave calculation.

ODA1 (order: 2)

PlanOpSim

Enlightened Planar Optics WWW.PLANOPSIM.COM

Phase error

LPA deviation

10

15

r 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.4

- 0.2

00000000

 $\otimes \otimes \otimes \otimes \otimes$

20

Focusing efficiency

- Example lens:
 - 50x50µm², 8 pillars, λ=520nm
 - $\succ~$ Intensity recorded in 10x10 μm^2 area
 - \blacktriangleright Focal distance swept from 25-200 μ m
- Size discrepancies "rings" occur more for high deflection angles
- Focal spot simulated by angular spectrum method
- For low NA the LPA approximation has lower error than for high NA

Convergence

- Strong change from 0-1 neighbour, smaller changes from 1-3
- 2 or 3 order decomposition produces stable result for single structure
- 6-9 order decomposition for structure + nearest neighbours
- Similar convergence for low and high NA lens

Comparison

Planopsim Enlightened Planar Optics WWW.PLANOPSIM.COM ODA error map

Full wave 'ground truth'

Overlapping Domain Analysis improves meta-surface calculation accuracy and is **18x faster than full wave calculation**

	Calculation time*	Memory usage	rmse	Max. diameter*	
LPA	1 minute	<1Gb	0,5	6000 μm	
ODA	23 minutes	8Gb	0,28	120µm**	*10µm
Full wave (meep)	6 hours	32Gb	/	10µm	Co ** 7

^t10µm diameter metalens Core i9, 64Gb RAM PC ^{t*} Time limited to 24h calculation

- Local Periodic Approximation is required to calculate large metasurfaces but introduces approximation errors
- The LPA becomes less accurate at high NA
- Overlapping Domain Analysis can be used to calculate a more accurate wavefront
- Overlapping Domain Analysis is a useful compromise between full wave simulation and LPA
- Full wave calculation area is limited by memory, ODA calculation area is limited by time

Ray tracing meta-surfaces

- Metasurface wavefronts in ray tracing
- High resolution: too slow for propagation calculations (POP)
- ✤ Wave calculation has 2π wrapped phase
- Dependent on wavelength, incident angle, polarization

* Example: Pixel level colour routing in system

Reference design: telecentric imaging system. Dummy window as place holder for meta-surface substrate

Wave simulation

∄ Ray Tracing Link

Colour multiplexing meta-lens designed and exported from PlanOpSim*

*Based on: GaN Metalens for Pixel-Level Full-Color Routing at Visible Light. *Nano Letters*, *17*(10), 6345–6352.

Metalens design workflow

PlanOpSim Enlightened Planar Optics WWW.PLANOPSIM.COM

Visit us at booth #2636!

www.planopsim.com info@planopsim.com +32 485 565 772

Meta-surface PDK

- Multi-project wafer service
- Submit meta-surface designs to manufacturing partner from PlanOpSim software
- Supported wavelength 940nm and size up to 5x5 mm

Step 2: run design

PlanOpSim Enlightened Planar Optics WWW.PLANOPSIM.COM