31 January 2023
Lieven Penninck, Bavo Robben and Peter Muys
SPIE Photonics West, San Fransico, USA
Lieven Penninck
Dispersion engineered hybrid
meta-surface design for highly
compact optical systems
Nano-scale design
Component design
System Integration
Planopsim’s mission
Planopsim supplies R&D tools to
engineers &scientists that allow to
unlock the maximum benefit of flat
optics in auser-friendly way.
PlanOpSim
Computer Aided Design software for Planar
Optics & metasurfaces
All-in-one design workflow
Design service for metasurfaces and
photonics
In-house and 3dparty tools
Why use meta-surfaces?
Miniaturization Simplification Functionalization
Invention
Why hybrid design
Strengths of meta-lenses
Wavefront control
Thin and flat
Multi-functionality
Limitations of (current) meta-lenses
Meta-surfaces size is still limited (40-80mm largest)
Efficiency < refractive lens
Chromatic focal length shift ~f*λ= cst
Mitigation strategies
Hybrid design
Dispersion engineering
Combination of 2
40mm diameter metalens
Focal shift of single
wavelength metalens
󰇛 󰇜 

Limits of dispersion engineering
Maximum dispersion in dielectric meta-
atom
Bandwidth, size and function are connected
*F. Presutti and F. Monticone, "Focusing on Bandwidth:
Achromatic Metalens Limits," Optica 7, (2020).)
Application parameters
Bandwidth
Diameter
Spatial frequency, NA
Literature devices within bounds of theoretical formula*
Design parameters: ∆Φ
Materials: index contrast
Structure: Height + aspect ratio
Complexity: multi-layers
  

󰇛 󰇜 
1. Library building
Structure library
Extract
dispersion
3. Component Design
Phase offset
Target matching
Mask generation
Step by step hybrid design
4. Analysis
Chromatic focal
shift
Efficiency & PSF
Workflow for hybrid design
2. System model
Ray tracing
Hybrid Design
Ideal target application
Narrow spectrum
Small diameters
High index contrast
Low NA / high F#
Which platforms have highest
potential for dispersion
engineered design?
IR: Si, Ge
Visible: TiO2, SiN, GaN
Height assumed = λ
Dispersion engineering size limit for different applications
Promising configurations
Maximum Radius (µm)
f#(-)
Example 1: fiber coupler
Example fiber to fiber coupling
Multimode fiber 50µm
NA : 0,4
Spectrum: 1530 1625nm (C+L band)
Goal of example:
Design a metalens fiber coupler
Minimize coupling loss over spectrum using dispersion engineering
Minimize system volume
Data from (NA 0,2 , wl 850nm):
https://www.ieee802.org/3/OMEGA/public/12_may_2020/plinio_OMEGA_01_120
520_EBOandBCFeasibility.pdf
Ray tracing model set up:
Reference: aspheric lens coupler
Design candidates
All surfaces AR coated
Meta-surfaces:
Wavelength specific phase profiles
Phase dispersion limit enforced per metasurface
All systems separately optimized:
Wavelengths: 1530, 1555, 1625nm
Phase profile determination
Hybrid
Dual
Reference
BK7 asphere
spheric
Meta-surface
Meta-surface Meta-surface
Intensity at 2nd fiber
50µm
Dispersion extraction
Meta-atom simulation using PlanOpSim MetaCell
(RCWA)
Extensive parameter search
Critieria: avg. Transmission, phase coverage, phase
dispersion coverage
Structures in library
Si
Air
Phase vs. wavelength
Extracted dispersion
Example calculation for 1 structure
Parameter
Value
P
800nm
Height
1650nm
Spectrum
1530
-1625nm
Incidence
0
°
Polarization
TE
Substrate
SiO
2
Library 24-255°= ΔΦ= 0,641 * 2 π
Dispersion library
System optimization with restricted dispersion engineering: ΔΦ= 24-255°
Φ@ 1555nm(°)
ΔΦ in spectrum(°)
T(-)
ΔΦ in lens(2π)
x(µm)
25k structures
1 dot = 1 structure
The system has been reduced in
volume by factor 31
Potential coupling loss reduced
26%
Case
Avg
. Coupling
loss
Diameter
System
length
Volume
Asphere
-
0,57dB
1,2 mm
7,6 mm
34,4 mm
3
Spheric
+ metalens
-
0,45dB
1,8mm
8,9 mm
90 mm
3
2 metalens (single wavelength)
-
0,79dB
0,43mm
1,96mm
1,1 mm
3
2 metalens (
dispersion engineered)
-
0,42dB
0,43mm
1,96mm
1,1 mm
3
1530nm
1625nm
Single wavelength metalenses Dispersion engineered
Ray tracing outcome
87% coupling
73% coupling
91% coupling
91% coupling
Phase fronts from ray tracing
Meta-cell from library
Offset application
Offset per wavelength
Shifts required ΔΦ(x) into available
range for all positions
Metalens definition
  
Φ@ 1555nm(°)
ΔΦ in spectrum(°)
Free design
parameter
Target per wavelength
Phase error low (<20°) for all 3 design
wavelengths in both metalenses
Structure usage across available dispersion
range
Further improvements require:
Denser population of library
Increased transmission across spectrum
Metalens generated
Metalens 2 phase profile
Metalens 2 phase error
x(µm)
λ(µm)
(°)

Example 2: NIR imager
Use in sensing application: LIDAR, facial
recognition …
Dot pattern generation emitter + receiver
Imaging system
Specifications
Quantity
Specification
Field of view
HFOV 30
°
Imaging performance
MTF >70% @100lp/mm
Diffraction
limited
Telecentric
CRA <3
°
Back Focal Length
5mm
Design Wavelength
920
-960nm
Numerical aperture
0,276
F
-number
1,74
Image Size
6,4x4mm
Distortion
<10%
Dispersion extraction
Critieria: avg. Transmission, phase coverage,
phase dispersion coverage
Meta-atom simulation using PlanOpSim
MetaCell (RCWA)
Structures in library
Si
Air
Parameter
Value
P
450nm
Height
1300nm
Spectrum
920
-960nm
Incidence
0
°
Polarization
TE
Substrate
SiO
2
11k structures
1 dot = 1 structure
Φ@ 940nm(°)
ΔΦ in spectrum(°)
ΔΦ= 0,708 * 2 π
System design
Dispersion contrained optical system
Specification
Hybrid
2 MOE + 2 Spherical
HFOV 30
°
30
°
MTF >70% @100lp/mm
Diffraction
limited
0
°
5
°
10
°
15
°
72,6%
71,3%
71%
66,7%
CRA <3
°
0,8
°
5mm
5mm
920
-960nm
920
-960
0,276
0,276
-number
1,74
1,7474
6,4x4mm
3,2 (
lateral colour)
<10%
1,5%
1311,6 mm³
MTF @940nm
MTF @920nm
MTF @960nm
Optical performance
MOE 1
MOE 2
Target error MOE1
Target well reproduced in active area
Corners exceed dispersion range -> poor target
reproduction
RMS Waverfront aberration <21°(= λ/17)
Phase error vs. wavelength
Target vs. Meta-surface phase
Target error MOE2
Corners exceed dispersion range -> poor
target reproduction
RMS Waverfront aberration <22°(= λ/16)
Transmission 49-78%
Phase error vs. wavelength
Target vs. Meta-surface phase
Wavefront phase for nominal and aberrated cases
Overall wavefront shape remains the same
Aberrated wavefront -> perturbation on ideal wavefront
Focal distance remains the same
Spot width remains the same
Loss of efficiency to scattering and higher diffraction orders
What effects do errors have?
Phase error
(RMS)
Amplitude
error (RMS)
16,2
°
0,19
34,2
°
0,23
68,5
°
0,35
Intensity
Meta-surfaces alone limited by storng chromatic focal length shift
Hybrid meta-surface systems allow to combine advantage of classical and meta-
optics
Balance short comings of each system
Design incorporates time-bandwidth limits
Nano-to-Macro workflow for hybrid meta-optics
Fiber optics: small, lowloss broadband fiber coupler
NIR imaging: compact design for 920-960nm
Summary
www.planopsim.com
lieven.penninck@planopsim.com
+32 485 565 772
Visit us at booth #5345!
Supported by
Questions