

Lieven Penninck

Meta-surface design from meta-atoms to systems

Design Seminar, San Fransico, USA

Enlightened Planar Optics

30 January 2023

PlanOpSim

PlanopSim Enlightened Planar Optics WWW.PLANOPSIM.COM

Planopsim's mission Planopsim supplies R&D tools to engineers & scientists that allow to unlock the maximum benefit of flat optics in a user-friendly way.

- Computer Aided Design software for metasurfaces & planar optics
 All-in-one design workflow
- Design service for metasurfaces and photonics
 Own and 3^d party tools

Why use meta-surfaces?

PlanOpSim Enlightened Planar Optics WWW.PLANOPSIM.COM

Basics of meta-surface design
Meta-atoms
Meta-surfaces
Meta-systems

Meta-optics project flow

PlanOpSim Enlightened Planar Optics WWW.PLANOPSIM.COM

Design complexity

Meta-atoms: calculation speed

* Benchmark:

➤ Geometric phase meta-atom

Calculation time vs. RMS error (at converged result)

- Full Maxwell solution is computationally intensive and limited to small areas
 > PlanOpSim (RCWA)
 > MEEP (FDTD)
- RCWA is much faster for meta-atom calculations
- In practical optimizations several thousand structures are calculated

Meta atoms: method comparison

* Benchmark:

- ≻ Circular pillar meta-atom
- > Transmission and phase for different structures
- Maxwell equations solved by different methods
 > PlanOpSim (RCWA)
 > MEEP/Lumerical (FDTD)
- Both methods give the same results

Pillar diameter (µm)

-130

-180

Component level

Full wave solutions are not possible even for small components

Huge component (for a full wave solver)

From full wave solver

- Fourier/ physical optics
 Field distribution
 - ➤Transform to frequency space
 - >Apply propagator
 - >Inverse transform to cartesian space
- Beam propagation method, Angular spectrum calculation
- Very fast, memory limit due to large number of meta-atoms
- Only in homogenous media

System level

- Macroscopic systems with many components
 Mechanics
 - ≻Temperature
 - ➤Tolerances and assembly
- Monte Carlo Ray tracing
- Sequential ray tracing: single direction
 >Imaging applications
 >Few hunderds of rays needed
- Non-sequential ray tracing: rays travel back and forth
 Non-imaging: illumination, waveguide optics, displays, stray-light in imaging

≻typically millions of rays needed (slow)

Outline

Basics of meta-surface design
Meta-atoms = full wave
Meta-surfaces= propagation
Meta-systems = ray tracing

Sub-wavelength structures: 3 main types

PlanopSim Enlightened Planar Optics WWW.PLANOPSIM.COM

Plasmonic structure

Dielectric structures

p

а

Dielectric structures

Viewpoints on dielectric sub-wavelength structure

Effective mediumWaveguideResonator

- N_{gap} < N_{effective} < N_{material}
 ▷ Δn is critical
 ▷ High n: Si, SiN, TiO₂
 ▷ Gap: air or low index material
- Phase & amplitude tuning:

≻Height

- ≻Geometry: Cylinders, Squares, Hexagon, Cross
- ➤Complex shapes:
 - Genetic algorithms
 - Adjoint optimization

Simple example

- * Meta-atom type:
 - Cylindrical pillars on glass
 - Square arrangement
 - \succ Si₃N₄ on SiO₂
- * Configurations scanned with full Maxwell solver
 - \succ 8 meta-atoms selected for 0-2 π phase coverage
 - > P: 400nm
 - → H: 600nm

SiN pillars on a SiO2 substrate

Polarization manipulation

Symmetry:

>90° symmetric: no change for TE/TM>Non-symmetric: polarization selectivity

Structural birefringence

Different n_{eff} for x/y polarization
 Acts as a an optical retarder with in plane c-axis

Tuning the shape

≻Change ∆n≻Rotation alters phase

Applications:

Polarization functionalizationGeometric phase

Half wave plate

Parametrized meta-atom

Layer Stack					
index	name	Structure	Thickness	Materials	
1	Incident layer	homogeneous	INF	Si	
2	Birefringent	rectangle	=Height	Air, Si	
3	Exit layer	homogeneous	INF	Air	

Parameterized Structures

Resolution 🥑	x: 100 y: 100
Width 📀	=Width_hor
Length 🕐	=Width_vert
Angle 🕐	45
Center Coordinate 📀	x: 0 y: 0

Structural birefringence

- Extra-ordinary n_{eff}
- Ordinary n_{eff}
- Parametrized search
 - Height, dimension, unit-cell
 - Maximize cross polarization
 - Minimize residual polarization
- Several good combinations:

 $\succ \Delta n_{eff} h = \frac{\lambda}{2}$

 Optimize for fabrication and reflectivity

Residual polarization

Enlightened Planar Optics WWW.PLANOPSIM.COM

PolarizationConversion

	Height	ordinary width	Extraordi nary width	T(Co-pol)	T(Cross- pol)	conversio n efficiency
Meta-cell 1	1345	200	400	3.7%	66.7%	94.7%
Meta-cell 1b	1345	210	400	0.4%	65.5%	99.4%
Meta-cell 2	1700	200	400	0.2%	66.5%	99.7%

[1] Y. Dong, et al. "Si metasurface half-wave plates demonstrated on a 12-inch CMOS platform" Nanophotonics, vol. 9, no. 1, pp. 149-157, 2019.

Geometric phase

- Geometric phase structures
 Elegant phase control
 Not limited to shapes or nano-structures
- Tuning the shape
 - Dispersion corrections
 - >Amplitude corrections (conversion efficiency)
- ✤ Applications:

> Polarization selective but not polarization controlling

 $> \varphi_{LCP}(x, y) = -\varphi_{RCP}(x, y)$

Library building

- Example library for polarization multiplexing
- Fast simulation is needed to construct large libraries:

[nm]

- Calculation time ~1-2 days
- Polarization effect-> symmetry breaking
- * Criteria T, ϕ , $d\phi/d\lambda$, ...
- 1 dot = 1 structure

Sim

PlanO

Optimization

- Comparison of 5 algorithms
- Benchmark problem (shown):
 > Optimization of 8 elements with 3 parameters: W, L, alpha

- Best algorithms: lowest error and good convergence time
 - Particle swarm
 - Bayesian optimization

Acceleration options

- Surrogate solver and optimization methods can speed up meta-atom design up to 500 fold
- * PSO, Bayesian and adjoint method are most performant optimization algorithms
- * Training takes more time than a classical design
- Future work:
- Wide applicapility
- Larger area

	Total calculation time	Acceleratio n factor
Brute force sweep	19.55hr	1 (baseline)
Inverse design	8.9hrs	2
Neural network	0.53hrs	37
Genetic Algorithm + Neural netowrk	0,04hrs (3mins)	488

Neural Network 104 RCWA 10³ 10² x10⁴ faster in seconds 10¹ 100 x33 faster 10^{-1} 100 10¹ 10² 10³ 104 # calls

Time benchmark

Structural colour

Tuning effective path length
Reflective & transmissive configurations
Conventional thin film filters limited by materials

Outline

Basics of meta-surface design
 Meta-atoms = full wave
 Meta-surfaces= propagation
 Meta-systems = ray tracing

Principles of meta-surfaces

Ray picture

0

50

100

150

θ(°)

200

250

300

350

- Any component works by re-arranging the wavefront of the incoming waves
- Meta- atoms locally control exit phase and amplitude

- Full control of wavefront
 - >Any profile can be reproduced
 - >Including difficult shapes: aspheric lenses, arrays

Pitch requirments

- Why sub-wavelength?
- Suppress diffraction:

$$\frac{2\pi n_t}{\lambda} < \frac{-2\pi n_r \sin(\theta_{in})}{\lambda} + 1\frac{2\pi}{P}$$

- * $P < \lambda/n$ only 0-order diffraction possible $P < \frac{\lambda}{n_{r/t} + n_r \sin(\theta_{in})}$
- Normal incidence into air:

$$P < \frac{\lambda}{n_r}$$

Sampling

Spatial sampling

 Nyquist theorem: 2 samples per period

$$\stackrel{\bullet}{\bullet} \frac{2\pi}{P} > 2 \frac{\delta \varphi}{\delta x} \longrightarrow P < \frac{\lambda}{2n \frac{\delta f}{\delta x}} \longrightarrow \text{Normalized}$$
gradient

- Implications:
 - Focal distance: short is more difficult
 - Beam steering: large deflection angle is more difficult

Phase sampling

- In reality phase is continuous
- In a metasurface we sample the phase
- Wavefront aberration function
 WAF_{RMS} < λ/14

1) US 2018 / 0246262 A1, low – contrast Silicon Nitride based metasurtaces

2) F. Aieta, et. al, "Aberrations of flat lenses and aplanatic metasurfaces," Opt. Express, vol.

21, no. 25, p. 31530, 2013.

3) Huang, K. *et al.* Planar Diffractive Lenses: Fundamentals, Functionalities, and

Applications. *Adv. Mater.* **30,** 1–22 (2018).

Practical effect

- Equal wavefront, changed phase sampling
- Diffraction limited lens for 1064nm

NA= 0.164

- Better sampling = higher efficiency
- Saturation from 16 levels

Focusing polarizing beamsplitter

- Analytical phase profile: aplanatic/diffraction limited lens
- Independent targets
 - >TE: focal distance 500µmand shifted left 50µm
 - \succ TM: focal distance 500µm and shifted right 50µm

ted lens

$$\varphi_{TE} = \frac{2\pi}{\lambda} \left(-f + \sqrt{f^2 + y^2 + (x + 50)^2} \right)$$

$$\varphi_{TM} = \frac{2\pi}{\lambda} \left(-f + \sqrt{f^2 + y^2 + (x - 50)^2} \right)$$

Sim

PlanOp

nlightened Planar (/WW.PLANOPSIM

Focusing polarizing beamsplitter

TE incidence

- ✤ Simulated Intensity profile at f (500µm)
- W/m² * TE and TM polarization separately focused
 - Transmission efficiency: 89.2%
 - Spot efficiency: 65.1%

4

2

- Ratio TE/TM 2250:1 in focal point
 - Commercial polarizing beamsplitter cube >1000:1

Circular Polarization (R) incidence

Multi-wavelength hologram

- Phase only hologram calculated using IFTA
 - Separate optimization for 632 and 532 nm
- Joint reproduction of phase profiles
 - Independent control of 532 and 632nm phase via polarization decoupling
 - Alternative: higher order tuning of d * n_{eff}
 - 64k structures
- Straight forward design of multi-functional metasurfaces

Parametrized meta-atom

Nano-structure library

Dispersion engineering

PlanOpSim Enlightened Planar Optics WWW.PLANOPSIM.COM

- From discrete wavelengths to broader bands
- ✤ Mapping:
 - > phase Φ
 - phase dispersion ΔΦ over spectral band
 - Transmission in band
- ✤ Structures in library

ф@550(°)

Dispersion engineering

 $\Delta \phi(x) = \varphi_{lens}(\lambda_2, x) - \varphi_{lens}(\lambda_1, x) + C(\lambda_2) - C(\lambda_1)$

- Functionality determines ΔΦ needed
- Choice of material and fabrication limits
 ΔΦ possible

$$\Delta \phi = 2\pi h \left(\frac{n_{max} - n_{min}}{\lambda_c} \right)$$

 Component optimization needs to account for nano-structure possibilities and limitations

PlanO

Example: achromatized grating

te 20

100

80

60

40

20

1000

500

0

-20

-10

10

0 x(µm) 20

-500

Diffraction efficiency(%)

 Dispersion engineered blazed grating:

PlanOpSim

Enlightened Planar Optics

- Spectral range 500 -650nm
- Angle spread : 0,4° (4,8-5,2°)
 - Classical grating: 1,3° (4,35°-5,65°)

Outline

Basics of meta-surface design
 Meta-atoms = full wave
 Meta-surfaces= propagation
 Meta-systems = ray tracing

Ray tracing

- Analytical calculation only possible in simple systems
- Realistic situations:
 Multiple specifications
 Multiple components
- * Optimize wavefront in ray tracing
 - Parametrized wavefront description
 E.g. polynomial series

$$\Phi = M \sum_{i=1}^{N} A_i \rho^{2i}$$

Advantages:

Co-optimization of multiple metasurfaces
 Hybrid systems can be designed
 Investigate complex performance trade-offs

Solution Disadvantage:

Idealized wavefront

2 meta-surface system

Hybrid meta-surface + refractivesystem

Spatial frequency (cycles/mm)

From wavefront to meta-surface

- Wavefront optimized in ray-tracing *
- Reproduce as meta-surface *
- Example for Si pillars @940nm
 - >Nanostructure Transmission efficiency 76% (NFWF efficiency)
 - > Focusing Efficiency 57% (FFWF Efficiency)

Design example

- Example fiber to fiber coupling
 - Multimode fiber 50µm
 - ≻ NA : 0,4
 - Spectrum: 1530 1625nm (C+L band)
- ✤ Goal of example:
 - Design a metalens fiber coupler
 - Minimize coupling loss over spectrum using dispersion engineering
 - Minimize system volume

Data from (NA 0,2 , wl 850nm): https://www.ieee802.org/3/OMEGA/public/12_may_2020/plinio_OMEGA_01_120 520_EBOandBCFeasibility.pdf

EBO Coupling - Plano-Convex Lenses | Lens Offset

Dispersion engineering in a system

- ✤ Binary phase profiles is by default constant vs. Wavelength
- Achromatization of meta-lenses requires a different wavefront shape for each wavelength
- Parameter optimization per wavelength

Standard optimization:

Fixed parameters for 450,550, 650nm diffractive lens $f * \lambda = c$

Optimization for dispersion engineering: Separate parameters for 450,550, 650nm Chromatic focal length shift strongly reduced

Phase profile determination

**

*

Nano-structure design

Dispersion library

Structures in library

- Extensive parameter search
- Critieria: avg. Transmission, phase coverage, phase difference coverage
- Available phase dispersion is an optimization limit for rat-tracing design

Ray tracing outcome

- The system has been
 reduced in volume by factor
 31
- Dispersion engineering needed for nonmonochromatic designs

Case	Avg . Coupling loss	Diameter	System length	Volume
Asphere	-0,57dB	1,2 mm	7,6 mm	34,4 mm ³
Spheric + metalens	-0,45dB	1,8mm	8,9 mm	90 mm ³
2 metalens (single wavelength)	-0,79dB	0,43mm	1,96mm	1,1 mm ³
2 metalens (dispersion engineered)	-0,42dB	0,43mm	1,96mm	1,1 mm ³

Metalens definition

- Phase fronts from ray tracing
- Meta-cell from library
- Offset application
 - > Offset per wavelength
 - Shifts required ΔΦ(x) into available range for all positions

$$\Delta \phi(x) = \varphi_{lens}(\lambda_1, x) - \varphi_{lens}(\lambda_2, x) + C(\lambda_1) - C(\lambda_2)$$

Free design parameter

PlanO

Metalens generated

- Phase error low (<20°) for all 3 design wavelengths in both metalense
- Structure usage across available dispersion range
- * Further improvements require:
 - Denser population of library
 - Increased transmission across spectrum

lement-70-1@1

Example 2: NIR imager

- Use in sensing application: LIDAR, facial recognition …
- Dot pattern generation emitter + receiver
- Imaging system
- Specifications

Quantity	Specification
Field of view	HFOV 30°
Imaging performance	MTF >70% @100lp/mm Diffraction limited
Telecentric	CRA <3°
Back Focal Length	5mm
Design Wavelength	920-960nm
Numerical aperture	0,276
F-number	1,74
Image Size	6 <i>,</i> 4x4mm
Distortion	<10%

Dispersion extraction

Structures in library

Air

- Critieria: avg. Transmission, phase coverage, phase dispersion coverage
- Meta-atom simulation using PlanOpSim MetaCell (RCWA)

Parameter	Value
Ρ	450nm
Height	1300nm
Spectrum	920-960nm
Incidence	0°
Polarization	ТЕ
Substrate	SiO ₂

System design

Dispersion contrained optical system

Quantity	Specification	Hybrid 2 MOE + 2 Spherical			
Field of view	HFOV 30°	30°			
Imaging	MTF >70% @100lp/mm	0°	5°	10°	15°
performance	performance Diffraction limited		71,3%	71%	66,7%
Telecentric	CRA <3°	0,8°			
Back Focal	5mm	5mm			
Length					
Design	920-960nm	920-960			
Wavelength					
Numerical	0,276	0,276			
aperture					
F-number	1,74	1,7474			
Image Size	6,4x4mm	3,2 (latera	al colour)		
Distortion	<10%	1,5%			
Total volume		1311,6 m	m³		

Target error MOE1

- Target well reproduced in active area
- Corners exceed dispersion range -> poor target reproduction
- ♣ RMS Waverfront aberration <21°(= λ /17)

PlanOpSim

WWW.PLANOPSIM

nlightened Planar Optics

COM

Target error MOE2

 Corners exceed dispersion range -> poor target reproduction
 RMS Waverfront aberration <22°(= λ/16)

Transmited light ~49-75%

Target vs. Meta-surface phase

Conclusion

- Meta surface applications require an integrated design workflow from nano- to system scale
- Multi-scale simulations allow efficient design by combining
- Full wave calculation : PlanOpSim Meta-Cell
- Propogation calcultions: PlanOpSim Meta-Component
- Ray tracing: nano-structure informed optimization
- Software tools allow fast and efficient design
- Meta-surface systems require multi-domain expertise.

Supported by:

Outline

Basics of meta-surface design
 Meta-atoms = full wave
 Meta-surfaces= propagation
 Meta-systems = ray tracing

BONUS: design for manufacture

Example: metalens

- Reference lens parameters:
 >Size: 200 x 200um
 >Focal distance *f:* 200µm
 >Design wavelength: 523nm
 >Corresponding NA: 0.45
- Analytical spherical phasefront:

 $\varphi(\lambda) = \frac{2\pi}{\lambda} \left[\sqrt{x^2 + y^2 + f^2} - f \right]$

- Simulated using physical optics propagatic
- ✤ Nominal spot characteristics:
 ▷FWHM: 0.516 µm
 ▷Focussing efficiency: 78.6%
 - Strehl ratio: 88.8%

Yield and tolerancing example

- Monte carlo study for error tolerancing
- 25'230 metalenses simulated in this plot

Comparison systematic to random error

Systematic errors

8.0

10.0

0.08 0.07

б 0.06

₫ 0.05

등 0.04

£ € 0.03

අ 0.02

0.00 -20

50.0

40.0

Enlightened Planar Optics WWW.PLANOPSIM.COM

Steepness

angle

Systematic errors have a stronger Efficiency (%) impact than random errors on focussing efficiency Monte carlo 100 results for metalens for 532nm 80 60

Random errors (Monte Carlo)

RMS

Ó

10

-10

What effects do errors have?

- Wavefront phase for nominal and aberrated cases
 Example: sidewall angle
- Overall wavefront shape remains the same
- Aberrated wavefront -> perturbation on ideal wavefront
 > Focal distance remains the same
 - Spot width remains the same
 - Loss of efficiency to scattering and higher diffraction orders

Transmission: additional loss

Sidewall angle	Phase error (RMS)	Amplitude error (RMS)
90° (nominal)	16,2°	0,19
89,5°	34,2°	0,23
89°	68,5°	0,35

Compensating known errors

- Known sidewall steepness 88,5° (worst case)
- Meta-atoms resimulated and selected
 - ≻P = 2µm
 - ≻H = 5,25µm
- Meta-atoms placement repeated using new meta-atom results
- * A known and constant error can be compensated

Sidewall angle	Transmission	Focussing efficiency	F/T
90° (nominal)	76%	59.9%	0,76
88,5° (uncompensated)	63,7%	2,4%	0,04
88,5° (compensated)	76,7%	60,9%	0,79