Accelerating meta-atom design with optimization, inverse design and Al methods: an application oriented benchmark

Michael Pieters, Bavo Robben and Lieven Penninck

14th International Photonics and OptoElectronics Meeting,

Wuhan China

PlanOpSim

Component design

System Integration

Planopsim's mission

Planopsim supplies R&D tools to engineers & scientists that allow to unlock the maximum benefit of flat optics in a user-friendly way.

Supported by:

Bottlenecks in meta-surface design

- Nano-structure full wave solution
 - > All full wave algorithms scale poorly vs. DOF
 - > Calculation times run into days to weeks easily
- Large area:
 - > Memory limitations
 - > Multi-scale methods increase the limit but require approximation
- Integration to system level
 - > Link from wave to ray scale not well developed
 - > Current models ignore higher order diffraction and amplitude

Example on-demand estimate for production (USD):*

- License server (t3.nano, 10 GB storage): \$5/month
- Compute instances (4 x c5n.18xlarge, 20 GB storage each): \$11,360/month, \$16/hour
- Shared storage (EFS, 1 TB usage): \$300/month

40mm diameter metalens

Speeding up nano-structure search

- Most time consuming aspect of design is the simulation of nano-structures
 - > Typical: several **10 000s of structures**
 - > Parametrized structures
 - > Arbitrary shape structures
- Design contains a solver and an optimization loop
 - > Time spent = #calls x loop time
 - > Loop time determined by EM solver
- Two approaches to speed up:
 - > Reduce #calls: smartest optimization alogrithm
 - > Reduce loop time: fastes solver
- "Orthogonal" approaches can be combined

Ampbell, S. A. D. C., Ell, D. A. S., Enkins, R. O. P. J., Ric, E. B., Hiting, W., An, J. O. A. F., & Erner, D. O. H. W. (2019). Review of numerical optimization techniques for meta-device design. *Optical Materials Express*, 9(4), 1842–1863.

Reference problem

BK7

* Reference problems:

> Optimization of Pancharatnam Berry phase structures

Standard design approach

- ➤ Library of 32 structures
- > Fixed height and unit cell
- ➤ TiO2 on glass
- > Wavelength 633nm
- > Period: 430nm

Benchmark:

- > Brute force parameter sweep
- > Particle Swarm Optimization
- ➤ Genetic Algorithm
- > Differential evolution
- > Covariance Matrix Adaptation Evolution Strategy
- > Bayesian optimization

Optimization: methods

Particle swarm optimization (PSO)

- Multiple starting points
- Direction of particle controlled by:
 - > Best solution of all particles
 - > Best position of individual particle
 - > Momentum of individual particle

Bayesian Optimization

- Constructs a polynomial approximation of the error landscape from previous iterations
- Analytical solution of appriximate polynomial error landscape

Optimization: methods

Genetic algorithm (GA) and Differential evolution (DE)

- Multiple starting points (population)
- Evolution over multiple iterations
 - > Best solutions kept
 - > Best solutions are changed by :
 - Cross-over
 - Random mutation

Covariance Matrix Adaptation Evolution Strategy (CMAES)

- Sampled solutiuons via normal distribution
- Evolution over multiple iterations
 - > Best solutions kept
 - > Search area expanded/decreased based on rate of change

Benchmark results

- Pancharatnam Berry structure optimization
- Convergence reached in 400-1500 solver calls
- **\Leftrightarrow** Error defined as $\varepsilon = |t t_{target}|$

Algorithm	Final error	#calls to converge
Bayes	0,066	485
PSO	0,086	509
DE	0,0878	917
GA	0,126	1123
CMAES	0,133	245

Adjoint optimization

Algorithm	Final error	#calls to converge
Adjoint Optimization	0,05	200
Bayes	0,066	485
PSO	0,086	509
DE	0,0878	917
GA	0,126	1123
CMAES	0,133	245

- Adjoint optimization
 - > 2 solver calls per optimization
 - > Gradient descent optimization
- Needs post-processing for:
 - > Binary material distribution
 - > Realistic feature sizes
- Post processing limits convergence and final result

Surrogate solver

- ❖ Neural networks trained to predict RCWA solver answers
 - > Reflected and transmitted phase and amplitude
 - > Fundamental order (00)
- Physical parameters
 - Period P
 - > Height H
 - > Radius r
 - > TE/TM
 - > \(\lambda\): 450-700nm

Surrogate NN results: example result

- DNN reproduces transmission and reflection
- Amplitude and phase reproduced
- Error metric: Euclidian distance

$$SE_{r/t} = |r/t_{NN} - r/t_{RCWA}|^2$$

Direction	MSE	Mean Error
Transmission	7,2 10-5	0,85%
Reflection	5,6 10-5	0,75%

Effect of network choice

- Sufficient network complexity needed
 - > Layers
 - > Neurons per layer
- ❖ Neural Network types:
 - > Fully connected layers
 - > Shared layer network
 - Neural tensor layer
 - #nodes and # layers optimized
- Training data:
 - ➤ Large amount: 14
 - > Representative sar

But is it faster?

- ❖ Surrogate NN is 33 20 000 times faster than direct RCWA call
- ❖ 1 call (0,033s) 33x faster
- ◆ 9000 parallel calls (0,44s) -> 20 000 times faster

Surrogate solver + optimization

- Seacrh via genetic algorithm combined with surrogate solver
- Direct implementation: 31sec
- Optimized for large batches: 4,5sec

Conclusions

- ❖ Surrogate solver and optimization methods can be used to speed up meta-atom design up to 500 fold
- ❖ PSO, Bayesian and adjoint method are most performant optimization algorithms
- Surrogate needs a pre-trained and accurate network. Training takes more time than a classical design.
- Surrogate only applicable to pre-defined material platform (substrate + material)

	#solver calls	Time per call	Total calculation time	Acceleration factor
Brute force sweep	64 000	1.1s	19.55hr	1 (baseline)
Parameter optimization	32 000	1.1s	8.9hrs	2
(Bayesian)				
Neural network training	400 000	1.1s	122hrs	0.16
Brute force pre-trained	64 000	0.03s	0.53hrs	37
surrogate				
Genetic + pre-trained	32 000	0.03s	0.27hrs	72
surrogate				
Brute force pre-trained	32 000	0,005s	0,04hrs (3mins)	488
surrogate				

Contact info

Reach us here!

www.planopsim.com

lieven.penninck@planopsim.com

Supported by:

