Sensitivity analysis and tolerancing of Mid Wave IR metalenses

<u>Lieven Penninck</u>, Wouter Woestenborghs

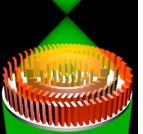
OSA Topical Meeting on Flat Optics, June 29 2021, Virtual Event

Who are we?

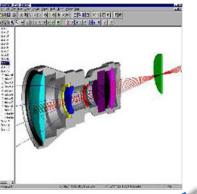
PlanopSim
Enlightened Planar Optics
WWW.PLANOPSIM.COM

- Start-up from Ghent, Belgium
- Dedicated provider of:
 - > Simulation software for metasurfaces
 - > Designhouse for photonic & optical applications
- ❖ 20 years of photonics R&D experience in industry and academia:
 - > Simulation
 - > Fabrication
 - > Measurement
- Supported by:

Founding team


Dr. Wouter Woestenborghs

PlanOpSim

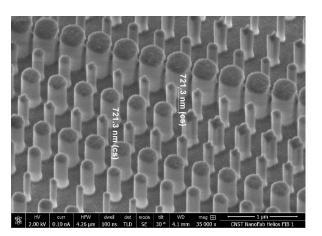


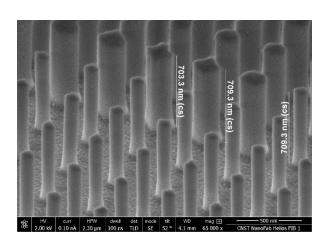
Nano-scale design

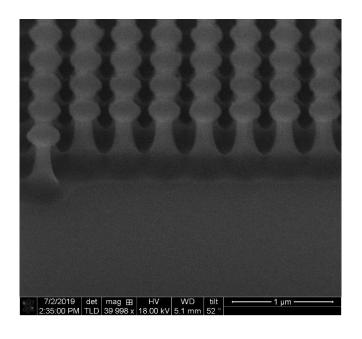
Component design

Planopsim's mission

Planopsim supplies R&D tools to engineers & scientists that allow to unlock the maximum benefit of flat optics in a user-friendly way.




- Computer Aided Design software for Planar Optics & metasurfaces
 - ➤ All-in-one design workflow
- Design service for metasurfaces and photonics
 - ➤In-house and 3^d party tools

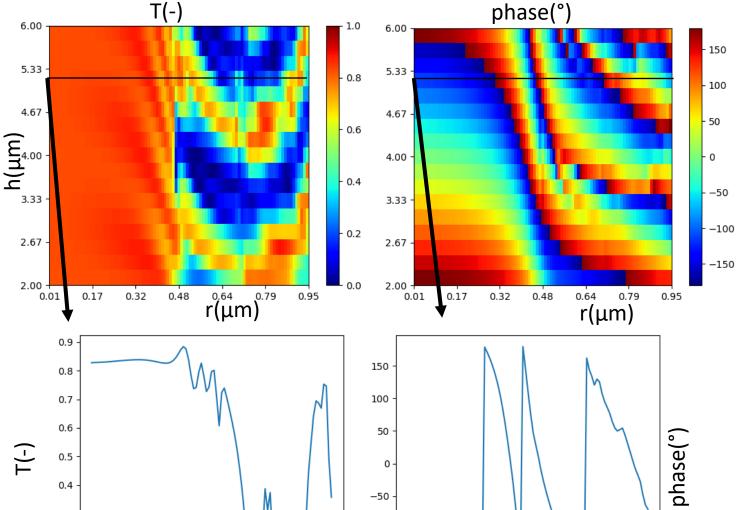

Which errors are critical?

- Typical design assumption:
 - > All structures are perfect
 - > Optimize until specifaction is reached
- **❖ X Million structures** in 1 meta-surface component
- There are systematic & random errors
 - > This study: **systematic errors**
 - > Random errors: Monte Carlo analysis
- In practice:
 - ➤ Which errors are critical-to-quality?
 - > What is the effect of various error types
 - > Which deviation can be tolerated of each type
- Sensitivity analysis:
 - > Design using nominal structures
 - > Simulation replaces nominal by perturbed structures

Reference meta-atom

0.3

0.2


0.1

0.0

0.2

r(µm)

-100

-150

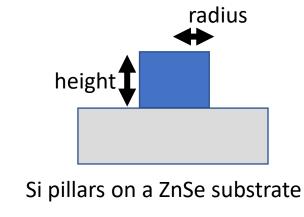
0.0

0.2

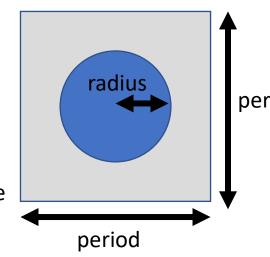
0.8

0.6

0.8


0.4

r(µm)


- Meta-atom type:
 - > Design λ: 4 μm
 - > a-Si Cylindrical pillars on ZnSe
 - > Square arrangement
- Configurations scanned with full Maxwell solver (PlanOpSim MetaCell)
- ❖ 8 meta-atoms selected for 0-360° phase coverage

> P: 2 μm

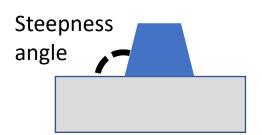
> H: 5,25 μm

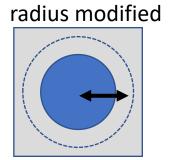
ZnSe

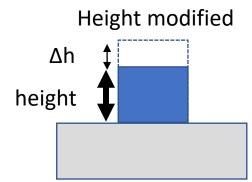
Reference metalens

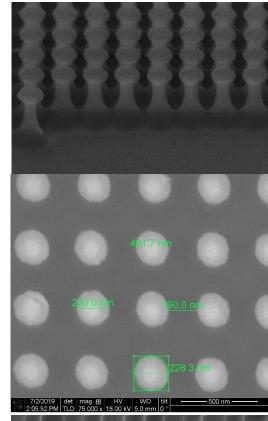
- Reference lens parameters:
 - > Size: 10 x 10 mm
 - ➤ Focal distance *f*: 20 mm
 - ➤ Corresponding NA: 0.24
- Analytical spherical phasefront:

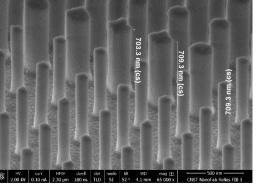
$$\varphi(\lambda) = \frac{2\pi}{\lambda} \left[\sqrt{x^2 + y^2 + f^2} - f \right]$$

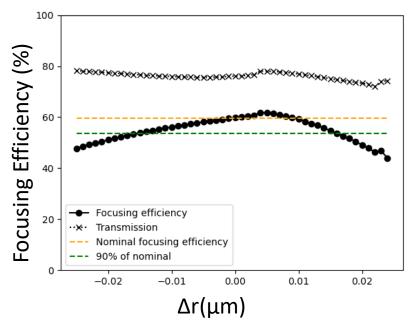

- Simulated using:
 - > Fresnel propagation
 - > Local periodic approximation
 - > PlanOpSim Meta-Component
- Nominal spot characteristics:
 - ≽ FWHM: 8.43 μm
 - > Transmission efficiency: 76.0%
 - > Focussing efficiency: 59%

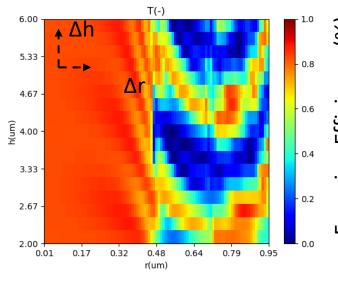


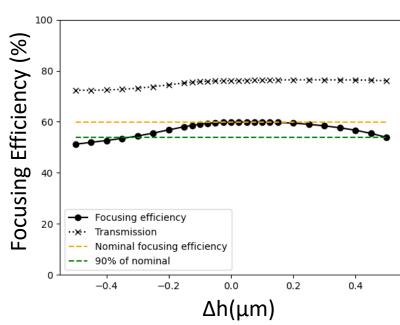

Error types


Planopsim
Enlightened Planar Optics
WWW.PLANOPSIM.COM

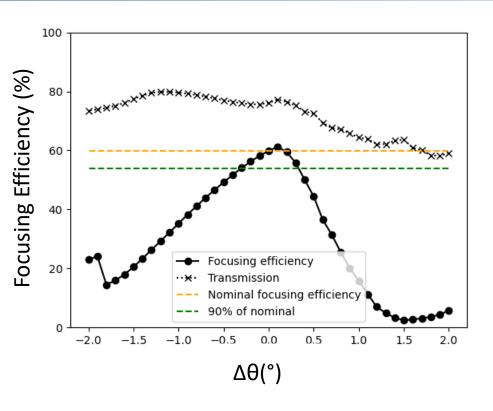

- Meta-atoms uniformly modified from nominal design parameters over entire meta-lens
- Sidewall angle
 - ➤ Nominally 90°
 - > Varied parameter: angle
 - > Assumption: cylinder -> cone
 - > Over- and underetching common
- Direct radius deformation
 - > Varied parameter: Δr
 - > Differences in resist exposure/developing
- Height difference
 - > Varied parameter: Δh
 - > Variations in film evaporation
- There are many more!







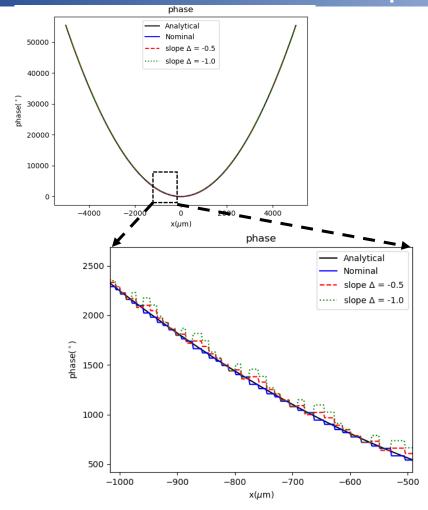
Sensitivity



- $\Delta r = \pm 0.025 \,\mu m$
- Transmission 76-> 72%
- Focussing efficiency 59,9->44,0%
- Threshold 90% of nominal focussing efficiency:
 - > ±15nm
 - > 0,75% of pitch/ 0,375% λ

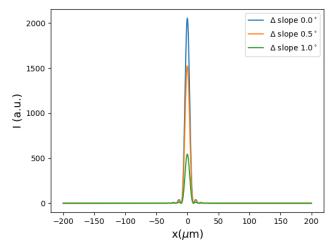
- $\Delta h = \pm 0.50 \,\mu m$
- Transmission 76-> 72,3%
- Focussing efficiency 59,9->51,2%
- Threshold 90% of nominal focussing efficiency:
 - >-300nm+500nm
 - > -5,7/+9,5% of height
 - > -7,5% / 12,5% λ

Sensitivity

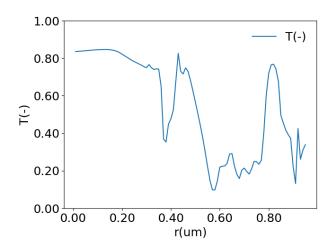


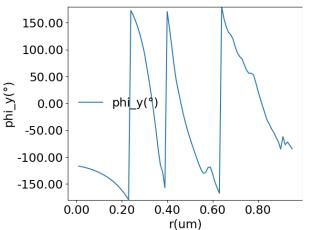
$$\Delta\theta = \pm 2^{\circ}$$

- Most sensitive parameter
- ❖ Transmission 76-> 58.2%
- ❖ Focussing efficiency 59,9->2.4%
- ❖ Focussing reduces more quickly than transmission
- Threshold 90% of nominal focussing efficiency:
 ±0,3°


What causes the performance loss

- Wavefront phase for nominal and aberrated cases
 - > Example: sidewall angle
- Overall wavefront shape remains the same
- Aberrated wavefront -> perturbation on ideal wavefront
 - > Focal distance remains the same
 - > Spot width remains the same
 - > Loss of efficiency to scattering
- Transmission: additional loss


Intensity at z = 20mm

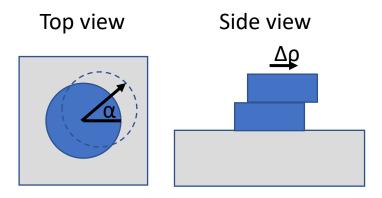


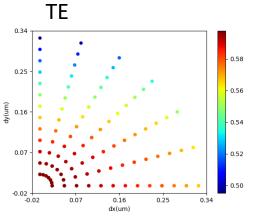
Sidewall angle	Phase error (RMS)	Amplitude error (RMS)
90° (nominal)	16,2°	0,19
89,5°	34,2°	0,23
89°	68,5°	0,35

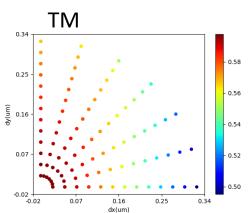
Compensating known errors

- Known sidewall steepness 88,5° (worst case)
- Meta-atoms resimulated and selected

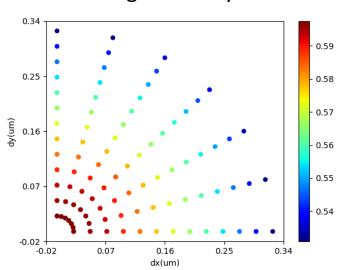
$$> P = 2\mu m$$


$$>$$
 H = 5,25μm

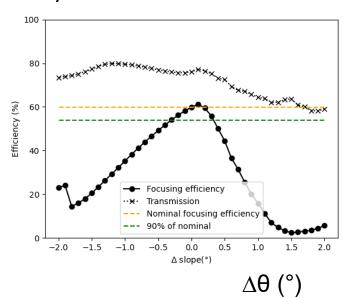

- Meta-atoms placement repeated using new meta-atom results
- A known and constant error can be compensated

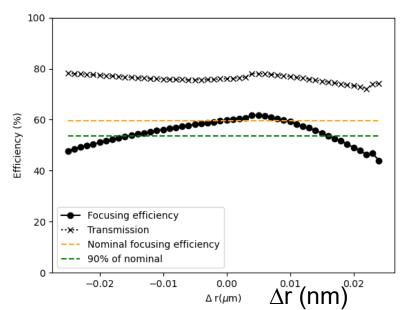

Sidewall angle	Transmission	Focussing efficiency	F/T
90° (nominal)	76%	59.9%	0,76
88,5° (uncompensated)	63,7%	2,4%	0,04
88,5° (compensated)	76,7%	60,9%	0,79

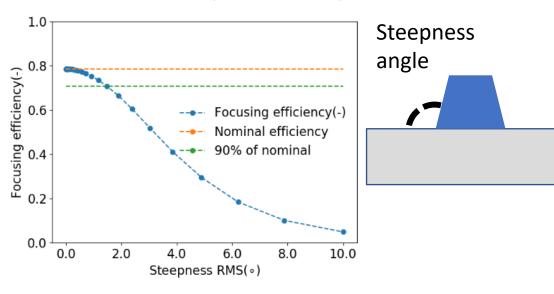
Multi-layer errors

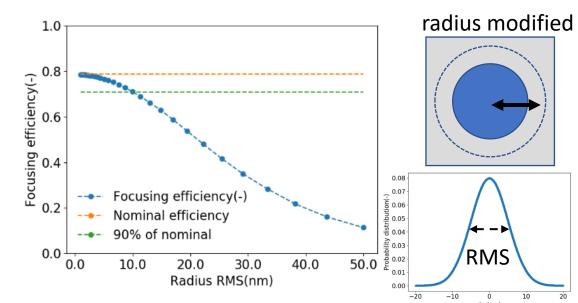


Focussing Efficiency


- Multi-layer structures
 - > Reference case 2-layers
- Alignment error:
 - > Angle α (0-90°)
 - \triangleright Distance ρ (0-325nm)
- Average focussing independent of angle
 - > Causes polarization sensitivity
- Focusing efficiency 59.9->53,1%
 - ➤ Transmission76% -> 70,1%
 - Efficiency mostly lost through reduced transmission


Comparison systematic to random error


- Systematic errors have a stronger impact than random errors on focussing efficiency
- Monte carlo results for meta-lens for 532nm


Systematic errors

Random errors (Monte Carlo)

Conclusions

- Knowing and controlling critical parameters is crucial
- Sensitivity analysis used to identify critical parameters and quantify tolerance criteria
- ❖ Fast integrated simulations provide insight to the link between structural parameters and device performance
- ❖ Wavefront aberration is the main cause of efficiency loss
- Fabrication guidelines (for reference metalens)

Parameter	Tolerance for 90% of nominal efficiency
Sidewall slope	±0,3°
Radius	±15nm (0,75% of pitch)
Height	-300nm/+500nm (5,7/9,5% og height)

Contact info

Reach us here!

www.planopsim.com

lieven.penninck@planopsim.com

+32 485 56 57 72

Supported by:

